Minimax Approach to Variable Fidelity Data Interpolation

نویسندگان

  • Alexey Zaytsev
  • Evgeny Burnaev
چکیده

Engineering problems often involve data sources of variable fidelity with different costs of obtaining an observation. In particular, one can use both a cheap low fidelity function (e.g. a computational experiment with a CFD code) and an expensive high fidelity function (e.g. a wind tunnel experiment) to generate a data sample in order to construct a regression model of a high fidelity function. The key question in this setting is how the sizes of the high and low fidelity data samples should be selected in order to stay within a given computational budget and maximize accuracy of the regression model prior to committing resources on data acquisition. In this paper we obtain minimax interpolation errors for single and variable fidelity scenarios for a multivariate Gaussian process regression. Evaluation of the minimax errors allows us to identify cases when the variable fidelity data provides better interpolation accuracy than the exclusively high fidelity data for the same computational budget. These results allow us to calculate the optimal shares of variable fidelity data samples under the given computational budget constraint. Real and synthetic data experiments suggest that using the obtained optimal shares often outperforms natural heuristics in terms of the regression accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robustness in portfolio optimization based on minimax regret approach

Portfolio optimization is one of the most important issues for effective and economic investment. There is plenty of research in the literature addressing this issue. Most of these pieces of research attempt to make the Markowitz’s primary portfolio selection model more realistic or seek to solve the model for obtaining fairly optimum portfolios. An efficient frontier in the ...

متن کامل

A Minimax Polynomial Approximation Objective Function Approach for Optimal Design of Power System Stabilizer by Embedding Particle Swarm Optimization

The paper presents a novel approach based on Minimax approximation and evolutionary tool Particle Swarm Optimization (PSO) to fabricate the parameters of Power System Stabilizers (PSSs) for multi machine power systems. The proposed approach employs PSO algorithm for find the setting of PSS parameters. The worth mentioning feature of this work is the formulation of objective function with the he...

متن کامل

Fully adaptive turbulence simulations based on Lagrangian spatio-temporally varying wavelet thresholding

A new framework for spatio-temporally adaptive turbulence simulations is proposed. The method is based on a variable-fidelity representation that tightly integrates numerics and modelling of subgrid-scale turbulence and aims to capture the flow physics on a near-optimal adaptive mesh. The integration is achieved by combining hierarchical wavelet-based computational modelling with spatially and ...

متن کامل

Continuous-time Signal Processing Based on Polynomial Approximation

A new approach for continuous-time processing of a discrete-time signal is proposed. This approach is based on simple modifications of the Farrow structure, which is a polynomial-based interpolation technique employing discrete-time filters for enabling arbitrary resampling of a time series. In this paper, an extension of the Farrow structure for other time-domain operations used for signal ana...

متن کامل

Constrained Interpolation via Cubic Hermite Splines

Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation.  It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017